Printer Friendly Tell a Friend

CardioPeptase, The “Miracle” Microbial Enzyme

Heard about CardioPeptase, the proteolytic enzyme sometimes known as serrapeptase or serratiopeptidase? Chances are you haven’t, until now. It’s only been available as a nutritional supplement in the US for the past few years. Yet for over 30 years serrapeptase has been gaining wide acceptance in Europe and Asia as a potent analgesic and anti-inflammatory drug.1,2 It’s been used to promote wound healing and surgical recovery.3,4 Recent Japanese patents even suggest that oral serrapeptase may help treat or prevent such viral diseases as AIDS and hepatitis B and C.5,6 But perhaps its most spectacular application is in reversing cardiovascular disease.7,8 In fact, serrapeptase appears so effective in unblocking carotid arteries that one researcher—Dr. Hans Nieper, the late, eminent internist from Hannover, Germany—called it a “miracle” enzyme.8

Does this all sound a little too miraculous to be true? Read on. There’s a solid scientific rationale for each of these heath benefits, and they all have to do with the fact that serrapeptase is “proteolytic” (literally, protein-dissolving).

Proteolytic enzymes (also known as proteinases or peptidases) are ubiquitous in nature, being found in animals, plants, bacteria, and fungi. Human beings produce such well known peptidases as trypsin and chymotrypsin to help digest our food, but we also generate countless others to control virtually every regulatory mechanism in our bodies. For example, various peptidases are involved in initiating blood clotting (thrombogenesis) and also in dissolving clots (fibrinolysis); in evoking an immune response and quelling it; and in both promoting and halting inflammation. The mechanism in each case is the ability of the enzyme to cut or cleave a protein target into two or more pieces, usually at very specific cleavage sites. The same mechanism makes it possible for peptidases to inactivate HIV, the AIDS-associated virus, by pruning the viral proteins necessary for infectivity.9

The medical use of enzymes as anti-inflammatory agents goes back many years. In the early 1950s it was discovered that intravenous trypsin could unexpectedly relieve the symptoms of many different inflammatory conditions, including rheumatoid arthritis, ulcerative colitis, and atypical viral pneumonia.10 Subsequently intramuscular enzyme injections were found to be beneficial in counteracting post-surgical swelling (edema), treating thrombophlebitis and lower back strain, and rapidly healing bruises caused by sports injuries.10

At that time the mechanism of the anti-inflammatory effect remained obscure. Today it is believed to involve degradation of inflammatory mediators, suppression of edema, activation of fibrinolysis, reduction of immune complexes (antibody-antigen conglomerates), and proteolytic modification of cell-surface adhesion molecules which guide inflammatory cells to their targets.11 (Such adhesion molecules are known to play an important role in the development of arthritis and other autoimmune diseases.) It’s also thought that the analgesic effect of proteolytic enzymes is due to their cleavage of bradykinin, a messenger molecule involved in pain signalling.11 However, according to another theory, peptidases such as trypsin may be acting not as anti-inflammatory agents but rather as accelerants of the inflammatory process, thereby shortening its duration.12 Whatever the mechanism, many studies of proteolytic enzymes over the years have demonstrated their effectiveness in relieving pain and inflammation independently of steroids or nonsteroidal anti-inflammatory drugs (NSAIDs).11
Fortunately we don’t need to rely on intramuscular injections any more to enjoy the benefits of proteolytic enzymes. Around 35 years ago researchers showed that enterically-coated enzymes such as trypsin13, chymotrypsin13,14 or bromelain15 were orally active. Oral proteolytic enzymes have been used successfully ever since for inflammatory conditions.11 Recently the intestinal absorption of orally administered serrapeptase has also been demonstrated.16 To achieve an ideal therapeutic effect, however, it is essential that any enzyme preparation be properly enterically coated so as to release the enzymes in the intestines (where they can be absorbed) and not in the stomach (where they can be digested).

The proteolytic enzymes in common use today derive from bacteria (serrapeptase grown from Serratia marcescens cultures), plants (bromelain from pineapple stem and papain from papaya), and animal sources (trypsin and chymotrypsin from hogs or cattle). They’re all generally useful, but for many applications serrapeptase appears to be the most useful of them all.1,17 In one study serrapeptase was compared to trypsin, chymotrypsin, and pronase (another microbial peptidase) in a rat model of scalding, which is known to induce abnormal activation of fibrinolysis.17 Serrapeptase was far more effective than any other enzyme in repressing fibrinolysis in this model, in agreement with its documented clinical efficacy as an anti-inflammatory agent.

By the way, in case you’ve got a good memory for details, you might have noticed that a few paragraphs back I said the activation of fibrinolysis, not its repression, is one of the likely anti-inflammatory mechanisms of serrapeptase. The truth is that serrapeptase, like other peptidases, can have seemingly contradictory effects at different times under different circumstances. The essential point of the study just cited is that serrapeptase and the other peptidases inhibited abnormal activation of fibrinolysis, and that this was a sign of their anti-inflammatory activity.17

In other circumstances serrapeptase is definitely fibrinolytic, i.e., clot-busting, and it is this property that makes it so useful in treating cardiovascular disease. According to Dr. Hans Nieper, only three 5 mg tablets of serrapeptase daily for 12 to 18 months are sufficient to remove fibrous blockages from constricted coronary arteries, as confirmed in many of his patients by ultrasound examination.8 But that’s still not the whole story—serrapeptase may well offer additional cardiovascular benefits not considered by Nieper. In particular, researchers have recently proposed that inflammation contributes to the development of arterial blockage. In one study, subjects with higher levels of CRP (C-reactive protein, a marker for systemic inflammation) were found to have a greater risk of future heart attack and stroke, independently of other risk factors such as smoking, high blood pressure, or cholesterol levels.18 Subjects with the highest levels of CRP who also used aspirin, however, showed dramatic decreases in their risk of heart attack, leading the researchers to speculate that the effectiveness of aspirin in preventing heart attack is due as much to its anti-inflammatory activity as to its anticlotting effects.

Serrapeptase, like aspirin, is both anti-inflammatory and anticlotting; unlike aspirin, however, serrapeptase can melt through existing fibrous deposits.7,8 Serrapeptase also lacks the serious gastrointestinal side effects associated with chronic use of NSAIDs such as aspirin. This combination of properties makes serrapeptase just about the perfect remedy for warding off cardiovascular disease, better even than the proverbial aspirin a day. It’s beginning to look more and more as though Dr. Nieper was right—serrapeptase is indeed a “miracle” enzyme.

For optimal results in unclogging arteries Nieper suggests combining serrapeptase with other nutritional factors, including bromelain, magnesium orotate, carnitine, and selenium; see the information packet obtainable from the Brewer Library for more details.7 To avoid possible pulmonary and ileal irritation, Nieper also recommends not exceeding a dose of about three tablets per day for long-term continuous use.7

Because serrapeptase is a blood-thinning agent, it’s wise to consult your physician if you’re already taking any form of anticoagulant therapy (or, for that matter, if you suffer from any serious illness). Despite these cautions, however, serrapeptase has an excellent tolerability profile in general. The Japanese company that first developed serrapeptase, recommends up to six 5 mg tablets per day—two tablets three times a day, between meals—for short-term treatment of acute inflammation due to surgery, wound healing, sinusitis, cystitis, bronchial asthma, bronchitis, and breast engorgement in lactating women.19 (On a personal note, I feel compelled to add an anecdotal observation—my wife finds that six tablets a day are also effective for relieving the pain and edema of PMS-related breast engorgement.)

If you’re already taking proteolytic enzymes such as bromelain or trypsin for sports injuries, arthritis, multiple sclerosis, or any other condition including PMS, try adding or substituting serrapeptase. You just might be amazed with the results. And if you’re not already taking proteolytic enzymes—what are you waiting for? There’s a miracle named serrapeptase waiting to happen for you now.


[1] Yamasaki H, Tsuji H, Saeki K. Anti-inflammatory action of a protease, TSP, produced by Serratia [in Japanese]. Folia Pharmacol Japon 1967;63(4):302-14.

[2] Mazzone A, Catalani M, Costanzo M, et al. Evaluation of Serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: a multicentre, double-blind, randomized trial versus placebo. J Int Med Res 1990;18(5):379-88.

[3] Tachibana M, Mizukoshi O, Harada Y, Kawamoto K, Nakai Y. A multi-centre, double-blind study of serrapeptase versus placebo in post-antrotomy buccal swelling. Pharmatherapeutica 1984;3(8):526-30.

[4] Esch PM, Gerngross H, Fabian A. Reduction of postoperative swelling. Objective measurement of swelling of the upper ankle joint in treatment with serrapeptase—a prospective study [in German]. Fortschr Med 1989;107(4):67-8, 71-2.

[5] Fujisaki S, Nakamura M, Kawazoe K, Fujisaki T, Yoshida J, Fujisaki Y. Agent for preventing and treating AIDS or viral disease such as chronic hepatitis, B type hepatitis or C type hepatitis. Patent Abstracts of Japan JP08040930; February 13, 1996.

[6] Fujisaki S, Tomioka C, Uchida K. Preventative/therapeutic agent for hepatitis B and C. Patent Abstracts of Japan JP11199509 A; July 27, 1999.

[7] Nieper, HA. Basic Cardiovascular Packet. Richland Center, Wisc: Brewer Science Library. Available from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web at

[8] Nieper HA, Alexander AD, Eagle-Ogden GS. The Curious Man: The Life and Works of Dr. Hans Nieper. Garden City Park, NY: Avery Publishing Group; 1999.

[9] Tang SB, Levy JA. Inactivation of HIV-1 by trypsin and its use in demonstrating specific virus infection of cells. J Virol Methods 1991;33(1-2):39-46.

[10] Sherry S, Fletcher AP. Proteolytic enzymes: a therapeutic evaluation. Clin Pharmacol Ther 1960;1(2):202-26.

[11] Klein G, Kullich W. Short-term treatment of painful osteoarthritis of the knee with oral enzymes. A randomised, double-blind study versus diclofenac. Clin Drug Invest 2000;19(1):15-23. Full text accessible at

[12] Borges EL, Mares-Guia M. Are proteases used as anti-inflammatory agents in reality accelerating the inflammatory process? Med Hypotheses 2000;54(3):453-5.

[13] Ambrus JC, Lassman HB, De Marchi JJ. Absorption of exogenous and endogenous proteolytic enzymes. Clin Pharmacol Ther 1967;8(3):362-7.

[14] Vakians A. Further studies on the absorption of chymotrypsin. Clin Pharmacol Ther 1964;5(6):712-5.

[15] Miller JM, Opher AW. The increased proteolytic activity of human blood serum after oral administration of bromelain. Exp Med Surg 1964;22:277-80.

[16] Moriya N, Nakata M, Nakamura M, et al. Intestinal absorption of serrapeptase (TSP) in rats. Biotechnol Appl Biochem 1994;20(Pt 1):101-8.

[17] Kakinuma A, Moriya N, Kawahara K, Sugino H. Repression of fibrinolysis in scalded rats by administration of Serratia protease. Biochem Pharmacol 1982;31(18):2861-6.

[18] Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997;336(14):973-9.

[19] Serrapeptase Tablets & Granules. Osaka, Japan: Takeda Chemical Industries, Ltd; April 1984.

To get our newsletter please enter your email address in the box below and press 'Subscribe' button.